#infranodus

   edit   deselect

 

#twinword

   edit   deselect

 

@twinword provides #topic_modeling #sentiment_analysis #word_associations info #lemmatization apis https://www.twinword.com/

   edit   deselect

 

https://www.twinword.com/

   edit   deselect

 

@infranodus provides #topic_modeling and #word_associations info (in process) http://infranodus.com

   edit   deselect

 

@twinword provides #document_similarity analysis

   edit   deselect

 

@datumbox provides #document_similarity #sentiment_analysis #topic_modeling api http://www.datumbox.com/

   edit   deselect

 

in #twinword api #lemmatization works only for english

   edit   deselect

 

@ibm_watson offers #topic_modeling #sentiment_analysis and #entity_extraction https://www.ibm.com/watson/

   edit   deselect

 

@textalizer performs some very basic #topic_modeling

   edit   deselect

 

@dandelion performs #sentiment_analysis #text_classification #entity_extraction #document_similarity via API (SaS) http://dandelion.eu/

   edit   deselect

 

@wordsapi provides #word_associations and #word_definitions via an API, also has an easy-to-use online tryout http://wordsapi.com

   edit   deselect

 

@eventregistry provides #topic_modeling and #concept_graphs for various news and events around the world (also API) http://eventregistry.org/

   edit   deselect

 

#infranodus also provides #concept_graphs

   edit   deselect

 

@rosette #entity_extraction #topic_modeling #name_matching (main project) via API http://rosette.com

   edit   deselect

 

https://www.rosette.com/

   edit   deselect

 

#rosette also provides #lemmatization

   edit   deselect

 

https://www.rosette.com/

   edit   deselect

 

#rosette #lemmatization https://www.rosette.com/

   edit   deselect

 

@monkey_learn provides #entity_extraction and #text_classification API https://monkeylearn.com/

   edit   deselect

 

@meaning_cloud #topic_modeling #sentiment_analysis #text_classification #summarization https://www.meaningcloud.com/

   edit   deselect

 

@text_razor #topic_modeling https://www.textrazor.com/

   edit   deselect

 

@aylien #topic_modeling #entity_extraction #sentiment_analysis #summarization https://developer.aylien.com/

   edit   deselect

 

@paralleldots #sentiment_analysis #entity_extraction #intent_analysis (also via API) https://www.paralleldots.com/

   edit   deselect

 

@summarize_bot #entity_extraction #summarization #lemmatization #bias_analysis https://www.summarizebot.com/

   edit   deselect

 
in graph:
     

    Show Nodes with degree > 0:

    0 0

    Show Contexts:


    Reset Filters
    network diversity level:
         
    Main Topical Groups
    (graph communities):
    N/A

    Most Influential Elements
    N/A

    Insight Question
    (structural gap):
    N/A

    Stats:
    total
    0
    nodes, graph density
    0
    , average degree:
    0

    Network Structure:
    N/A
      [?]

    0
    modularity,
    0
    % of words in the top topic (total
    0
    topics),
    0
    % in the main connected component (
    0
    in total), influence dispersal
    0
    %


    Reset Graph   Export: PNG Gexf
    Main Topics
    (according to Latent Dirichlet Allocation):
    loading...

    Most Influential Words
    (main topics and words according to LDA):
    loading...

    LDA works only for English-language texts at the moment. More support is coming soon, subscribe @noduslabs to be informed.