graph view:
×  ⁝⁝ 
Graph Language Processing Settings:

Specify the settings for your text-to-network conversion algorithm for this graph.
Lemmatizer: ?
Every word will be converted to its lemma (e.g. bricks > brick, taken > take) and will be shown on the graph as a node. Set to your language for more precise results. Switch off to turn off lemmatization and add your custom stop words list below.
Show on Graph:   Double Brackets [[]]:  Categories and Tags:   
Stop Words: ?
List the words, comma-separated (no spaces), that should not appear in the graph, in addition to your default global stopwords list.
Example: is,the,as,to,in

Synonym Nodes: ? unmerge all
If you'd like some words to appear as one node on the graph, in addition to your default global synonyms list, list the synonyms, one per line.
machine:machine learning
learning:machine learning


×  ⁝⁝ 
Dynamic Graph Settings

See the dynamic evolution of this graph: scroll or "play" the text entries to see how the text propagated through the network graph over time.

the final graph

highlight propagation edge
show visible statements only

Play the Graph

current speed of the player:
0 2000

one statement at a time

×  ⁝⁝ 
Export the Data

Network Graph Images:

The graph images for publishing on the web or in a journal. For embeds and URLs use the share menu.
PNG (Image)  SVG (Hi-Res)

Visible Statements (Tagged):

Export the currently filtered (visible) statements with all the meta-data tags (topics, sentiment).
CSV (Spreadsheet)   MD (e.g.Obsidian)  

Network Graph Data:

The raw data with all the statistics for further analysis in another software.
JSON  CSV  Gexf (Gephi)

All the Text:

Plain text used to create this graph without any meta-data.
Download Plain Text (All Statements)
× ⁝⁝ 
Share Graph Image

Share a non-interactive image of the graph only, no text:
Download Image Tweet
Share Interactive Text Graph


×  ⁝⁝ 
Save This Graph View:


×  ⁝⁝ 
Delete This Graph:


×  ⁝⁝ 
Project Notes:
Top keywords (global influence):
Top topics (local contexts):
Explore the main topics and terms outlined above or see them in the excerpts from this text below.
See the relevant data in context: click here to show the excerpts from this text that contain these topics below.
Tip: use the form below to save the most relevant keywords for this search query. Or start writing your content and see how it relates to the existing search queries and results.
Tip: here are the keyword queries that people search for but don't actually find in the search results.

landscape model of reading, priming, cooccurrence graphs

   edit   deselect   + to AI


This model captures both on-line comprehension processes during reading and the off-line memory representation after reading is completed, incorporating both memory-based and coherence-based mechanisms of comprehension.

   edit   deselect   + to AI


A central component of successful reading comprehension is the construction of a coherent memory representation of the text.

   edit   deselect   + to AI


The model is based on the premise that, during reading, the ideas and concepts associated with the text fluctuate in their activation. The result is a dynamically shifting landscape of activations. Two factors contribute to the shape of this landscape: readers' limited attentional resources and their attempts to maintain standards for coherence.

   edit   deselect   + to AI


Priming is an implicit memory effect in which exposure to one stimulus influences a response to another stimulus.

   edit   deselect   + to AI


Priming can occur following perceptual, semantic, or conceptual stimulus repetition. For example, if a person reads a list of words including the word table, and is later asked to complete a word starting with tab, the probability that he or she will answer table is greater than if they are not primed.

   edit   deselect   + to AI


Semantic priming is theorized to work because of spreading neural networks.[9] When a person thinks of one item in a category, similar items are stimulated by the brain. Even if they are not words, morphemes can prime for complete words that include them.[16] An example of this would be that the morpheme 'psych' can prime for the word 'psychology'.

   edit   deselect   + to AI


Context priming works by using a context to speed up processing for stimuli that are likely to occur in that context. A useful application of this effect is reading written text.[18] The grammar and vocabulary of the sentence provide contextual clues for words that will occur later in the sentence. These later words are processed more quickly than if they had been read alone, and the effect is greater for more difficult or uncommon words

   edit   deselect   + to AI


Priming is a nonconscious form of human memory concerned with perceptual identification of words and objects. It refers to activating particular representations or associations in memory just before carrying out an action or task. For example, a person who sees the word "yellow" will be slightly faster to recognize the word "banana." This happens because yellow and banana are closely associated in memory. Additionally, priming can also refer to a technique in psychology used to train a person's memory in both positive and negative ways.

   edit   deselect   + to AI


In computational linguistics, word-sense induction (WSI) or discrimination is an open problem of natural language processing, which concerns the automatic identification of the senses of a word (i.e. meanings).

   edit   deselect   + to AI


The main hypothesis of co-occurrence graphs is assuming that the semantic of a word is represented by means of co-occurrence graph, whose vertices are co-occurrences and edges are co-occurrence relations. These approaches are related to word clustering methods, where co-occurrences between words can be obtained on the basis of grammatical [8] or collocational relations.[9] HyperLex is the successful approaches of a graph algorithm, based on the identification of hubs in co-occurrence graphs, which have to cope with the need to tune a large number of parameters.

   edit   deselect   + to AI


Visualize co-occurrence graph from document occurrence input using R package 'igraph'

   edit   deselect   + to AI


java - large-scale document co-occurrence analysis - Stack Overflow

   edit   deselect   + to AI


This study used graph analysis to investigate how age differences modify the structure of semantic word association networks of children and adults and if the networks present a small-world structure and a scale-free distribution which are typical of natural languages. All networks presented a small-world structure, but they did not show entirely scale-free distributions. These results suggest that from childhood to adulthood, there is an increase not only in the number of words semantically linked to a target but also an increase in the connectivity of the network.

   edit   deselect   + to AI


× ⁝⁝ 
Show Nodes with Degree > 0:

0 0

Total Nodes Shown:

Filter Graphs:

Filter Time Range
from: 0
to: 0

Recalculate Metrics Reset Filters
Show Labels for Nodes > 0 size:

0 0

Default Label Size: 0

0 20

Edges Type:

Layout Type:


Reset to Default
semantic variability:
×  ⁝⁝ 
×  ⁝⁝ 
Semantic Variability Score
— modulates diversity of the discourse network  how it works?
The score is calculated based on how modular the structure of the graph is (> 0.4 means the clusters are distinct and separate from one another = multiple perspectives). It also takes into account how the most influential nodes are dispersed among those clusters (higher % = lower concentration of power in a particular cluster).
Actionable Insight:


We distinguish 4 states of variability in your discourse. We recommend that a well-formed discourse should go through every stage during its evolution (in several iterations).

  1 - (bottom left quadrant) — biased — low variability, low diversity, one central idea (genesis and introduction stage).
  2 - (top right) - focused - medium variability and diversity, several concepts form a cluster (coherent communication stage).
  3 - (bottom right) - diversified — there are several distinct clusters of main ideas present in text, which interact on the global level but maintain specificity (optimization and reflection stage).
  4 - (left top) — dispersed — very high variability — there are disjointed bits and pieces of unrelated ideas, which can be used to construct new ideas (creative reformulation stage).

Read more in the cognitive variability help article.
Generate AI Suggestions
Your Workflow Variability:
Shows to what extent you explored all the different states of the graph, from uniform and regular to fractal and complex. Read more in the cognitive variability help article.

You can increase the score by adding content into the graph (your own and AI-generated), as well as removing the nodes from the graph to reveal latent topics and hidden patterns.
Phases to Explore:
AI Suggestions  
×  ⁝⁝ 
Main Topical Clusters:

please, add your data to display the stats...
+     full table   ?     Show Categories

The topical clusters are comprised of the nodes (words) that tend to co-occur together in the same context (next to each other).

We use a combination of clustering and graph community detection algorithm (Blondel et al based on Louvain) to identify the groups of nodes are more densely connected together than with the rest of the network. They are aligned closer to each other on the graph using the Force Atlas algorithm (Jacomy et al) and are given a distinct color.
Most Influential Elements:
please, add your data to display the stats...
+     Reveal Non-obvious   ?

AI Paraphrase Graph

We use the Jenks elbow cutoff algorithm to select the top prominent nodes that have significantly higher influence than the rest.

Click the Reveal Non-obvious button to remove the most influential words (or the ones you select) from the graph, to see what terms are hiding behind them.

The most influential nodes are either the ones with the highest betweenness centrality — appearing most often on the shortest path between any two randomly chosen nodes (i.e. linking the different distinct communities) — or the ones with the highest degree.
Network Structure:
The network structure indicates the level of its diversity. It is based on the modularity measure (>0.4 for medium, >0.65 for high modularity, measured with Louvain (Blondel et al 2008) community detection algorithm) in combination with the measure of influence distribution (the entropy of the top nodes' distribution among the top clusters), as well as the the percentage of nodes in the top community.

Reset Graph   Export: Show Options
Action Advice:
Structural Gap
(ask a research question that would link these two topics):
Reveal the Gap   ?   Generate an AI Question
A structural gap shows the two distinct communities (clusters of words) in this graph that are important, but not yet connected. That's where the new potential and innovative ideas may reside.

This measure is based on a combination of the graph's connectivity and community structure, selecting the groups of nodes that would either make the graph more connected if it's too dispersed or that would help maintain diversity if it's too connected.

Latent Topical Brokers
(less visible terms that link important topics):

These are the latent brokers between the topics: the nodes that have an unusually high rate of influence (betweenness centrality) to their freqency — meaning they may appear not as often as the most influential nodes but they are important narrative shifting points.

These are usually brokers between different clusters / communities of nodes, playing not easily noticed and yet important role in this network, like the "grey cardinals" of sorts.

Emerging Keywords

Evolution of Topics
(number of occurrences per text segment) ?
The chart shows how the main topics and the most influential keywords evolved over time. X-axis: time period (split into 10% blocks). Y-axis: cumulative number of occurrences.

Drag the slider to see how the narrative evolved over time. Select the checkbox to recalculate the metrics at every step (slower, but more precise).

Main Topics
(according to Latent Dirichlet Allocation):

LDA stands for Latent Dirichlet Allocation — it is a topic modelling algorithm based on calculating the maximum probability of the terms' co-occurrence in a particular text or a corpus.

We provide this data for you to be able to estimate the precision of the default InfraNodus topic modeling method based on text network analysis.
Most Influential Words
(main topics and words according to LDA):

We provide LDA stats for comparison purposes only. It works with English-language texts at the moment. More languages are coming soon, subscribe @noduslabs to be informed.

Sentiment Analysis

positive: | negative: | neutral:
reset filter    ?  

We analyze the sentiment of each statement to see whether it's positive, negative, or neutral. You can filter the statements by sentiment (clicking above) and see what kind of topics correlate with every mood.

The approach is based on AFINN and Emoji Sentiment Ranking

Use the Bert AI model for English, Dutch, German, French, Spanish and Italian to get more precise results (slower). Standard model is faster, works for English only, is less precise, and is based on a fixed AFINN dictionary.

Keyword Relations Analysis:

please, select the node(s) on the graph see their connections...
+   ⤓ download CSV   ?

Use this feature to compare contextual word co-occurrences for a group of selected nodes in your discourse. Expand the list by clicking the + button to see all the nodes your selected nodes are connected to. The total influence score is based on betweenness centrality measure. The higher is the number, the more important are the connections in the context of the discourse.
Top Relations / Bigrams
(both directions):

⤓ Download   ⤓ Directed Bigrams CSV   ?

The most prominent relations between the nodes that exist in this graph are shown above. We treat the graph as undirected by default. Occurrences shows the number of the times a relationship appears in a 4-gram window. Weight shows the weight of that relation.

As an option, you can also downloaded directed bigrams above, in case the direction of the relations is important (for any application other than language).

Text Statistics:
Word Count Unique Lemmas Characters Lemmas Density
Text Network Statistics:
Show Overlapping Nodes Only

⤓ Download as CSV  ⤓ Download an Excel File
Network Structure Insights
mind-viral immunity:
The higher is the network's structure diversity and the higher is the alpha in the influence propagation score, the higher is its mind-viral immunity — that is, such network will be more resilient and adaptive than a less diverse one.

In case of a discourse network, high mind-viral immunity means that the text proposes multiple points of view and propagates its influence using both highly influential concepts and smaller, secondary topics.
The higher is the diversity, the more distinct communities (topics) there are in this network, the more likely it will be pluralist.
The network structure indicates the level of its diversity. It is based on the modularity measure (>0.4 for medium, >0.65 for high modularity, measured with Louvain (Blondel et al 2008) community detection algorithm) in combination with the measure of influence distribution (the entropy of the top nodes' distribution among the top clusters), as well as the the percentage of nodes in the top community.

Influence Distribution
Topics Nodes in Top Topic Components Nodes in Top Comp
Nodes Av Degree Density Weighed Betweenness

Narrative Influence Propagation:
The chart above shows how influence propagates through the network. X-axis: lemma to lemma step (narrative chronology). Y-axis: change of influence.

The more even and rhythmical this propagation is, the stronger is the central idea or agenda (see alpha exponent below ~ 0.5 or less).

The more variability can be seen in the propagation profile, the less is the reliance on the main concepts (agenda), the stronger is the role of secondary topical clusters in the narrative.
propagation dynamics: | alpha exponent: (based on Detrended Fluctuation Analysis of influence) ?   show the chart
We plot the narrative as a time series of influence (using the words' betweenness score). We then apply detrended fluctuation analysis to identify fractality of this time series, plotting the log2 scales (x) to the log2 of accumulated fluctuations (y). If the resulting loglog relation can be approximated on a linear polyfit, there may be a power-law relation in how the influence propagates in this narrative over time (e.g. most of the time non-influential words, occasionally words with a high influence).

Using the alpha exponent of the fit (which is closely related to Hurst exponent)), we can better understand the nature of this relation: uniform (pulsating | alpha <= 0.65), variable (stationary, has long-term correlations | 0.65 < alpha <= 0.85), fractal (adaptive | 0.85 < alpha < 1.15), and complex (non-stationary | alpha >= 1.15).

For maximal diversity, adaptivity, and plurality, the narrative should be close to "fractal" (near-critical state). For fiction, essays, and some forms of poetry — "uniform". Informative texts will often have "variable + stationary" score. The "complex" state is an indicator that the text is always shifting its state.

Degree Distribution:
  calculate & show   ?
(based on kolmogorov-smirnov test) ?   switch to linear
Using this information, you can identify whether the network has scale-free / small-world (long-tail power law distribution) or random (normal, bell-shaped distribution) network properties.

This may be important for understanding the level of resilience and the dynamics of propagation in this network. E.g. scale-free networks with long degree tails are more resilient against random attacks and will propagate information across the whole structure better.
If a power-law is identified, the nodes have preferential attachment (e.g. 20% of nodes tend to get 80% of connections), and the network may be scale-free, which may indicate that it's more resilient and adaptive. Absence of power law may indicate a more equalized distribution of influence.

Kolmogorov-Smirnov test compares the distribution above to the "ideal" power-law ones (^1, ^1.5, ^2) and looks for the best fit. If the value d is below the critical value cr it is a sign that the both distributions are similar.
Please, enter a search query to visualize the difference between what people search for (related queries) and what they actually find (search results):

We will build two graphs:
1) Google search results for your query;
2) Related searches for your query (Google's SERP);
Click the Missing Content tab to see the graph that shows the difference between what people search for and what they actually find, indicating the content you could create to fulfil this gap.
Please, enter a search query to discover what else people are searching for (from Google search or AdWords suggestions):

We will build a graph of the search phrases related to your query (Google's SERP suggestions).
Find a market niche for a certain product, category, idea or service: what people are looking for but cannot yet find*

We will build two graphs:
1) the content that already exists when you make this search query (informational supply);
2) what else people are searching for when they make this query (informational demand);
You can then click the Niche tab to see the difference between the supply and the demand — what people need but do not yet find — the opportunity gap to fulfil.
Please, enter your query to visualize Google search results as a graph, so you can learn more about this topic:

   advanced settings    add data manually
Discover the main topics, recurrent themes, and missing connections in any text or an article:  
Discover the main themes, sentiment, recurrent topics, and hidden connections in open survey responses:  
Discover the main themes, sentiment, recurrent topics, and hidden connections in customer product reviews:  
Enter a search query to analyze the Twitter discourse around this topic (last 7 days):

     advanced settings    add data manually

Enter a topic or a @user to analyze its social network on Twitter:

 advanced settings    add data manually

Sign Up