×  ⁝⁝ 
Export the Data


Network Graph Images:

The graph images for publishing on the web or in a journal. For embeds and URLs use the share menu.
PNG (Image)  SVG (Hi-Res)

Visible Statements (Tagged):

Export the currently filtered (visible) statements with all the meta-data tags (topics, sentiment).
CSV (Spreadsheet)   MD (e.g.Obsidian)  

Network Graph Data:

The raw data with all the statistics for further analysis in another software.
JSON  CSV  Gexf (Gephi)

All the Text:

Plain text used to create this graph without any meta-data.
Download Plain Text (All Statements)
×
Share Graph Image

 
Share a non-interactive image of the graph only, no text:
Download Image Tweet
 
Share Interactive Text Graph

 

 
×
Save This Graph View:

 

×
Delete This Graph:

 

×
About this Context Graph:

 
total nodes:  extend
 
InfraNodus
Top keywords (global influence):
Top topics (local contexts):
Explore the main topics and terms outlined above or see them in the excerpts from this text below.
See the relevant data in context: click here to show the excerpts from this text that contain these topics below.
Tip: use the form below to save the most relevant keywords for this search query. Or start writing your content and see how it relates to the existing search queries and results.
Tip: here are the keyword queries that people search for but don't actually find in the search results.

Do we want resilient systems? When is it necessary to aim for them? And if the consequence is a certain trade off towards, for example, an increase in efficiency, a decrease in efficiency? How do we establish the right balance? Mind name is David Orban. And this is the context. I was supposed to travel to Seoul, and then to Montreal, and then back to Europe, in an around the world trip, after two years, being able to visit my daughter in my middle son in Canada and then Omicron intervene and I cannot go the borders are once again, if not impenetrable, if you have to go through quarantine, and the total stay is two weeks well, it stops making sense. So, we are postponing our trip to either the spring or whenever it is going to be. We have already bought our plane tickets. So I will now call the two airlines turns out Polish lot and air Mexico that provided the tickets in this weird planning that I was able to do And my expectation is that they will indeed, allow me to move the ticket

   edit   deselect   + to AI

 

to another date, or suspend the ticket until I know I can fly. And my expectation is, because otherwise, airlines would not be able to sell plane tickets. We'll live in a complex world, how complex, it has been highlighted for many of us during COVID. Exactly, because the intricacies and the interconnected nature of so many processes and procedures was transparent, became transparent. When things didn't go smoothly, as we grew to expect, maybe during the previous decade, for example. And this kind of insight into the complexity and intricacy of our world is extremely helpful. It is healthy, to understand what effort it actually takes to accomplish things. And how much effort additionally is required when things are not going well. And you still want to deliver the expected result. The ability to deliver the expected result under a certain unexpected solid decision. The ability to deliver the expected result under adverse conditions, unexpected forces pushing you left and right is what

   edit   deselect   + to AI

 

resilience is about. Our systems are resilient, if we can rely on them, well, maybe not under any possible circumstances, but even under unexpected ones. And a complex world will express unexpected circumstances often. So we need resilient systems. And their resiliency comes at a cost. Because you have to have a

   edit   deselect   + to AI

 

padding, you cannot just set things up in a manner that is perfectly tailored to the procedure as it works. When it works best. You have to give a leeway both through the processes the people, you have to rely on their ability to adapt or even improvise, because you enable them to keep an eye on the result. And you enable them to change the procedures to change the rules to be more adaptable. The consequence of this padding of this leeway of this increased adaptability is a decrease in efficiency. It would be fantastic if we could optimize once and and forever. The procedures, the processes we could teach people, what do they have to follow? And then we could tell them to follow those procedures mindlessly without the investment in energy and creativity, that adapting to the new circumstances would require because under those assumptions, there would be never a new circumstance, only the well established bath. And yes, this kind of optimization is impossible. It just doesn't happen.

   edit   deselect   + to AI

 

So we have to accept that the efficiency decreases as compared to a hypothetical ideal process that is super optimized. And we have to remember that because it is an easy trap. To then forget about the premise. And to conclude, oh, look at that. That is inefficient. Let's make it more efficient. Let's optimize it, let's over optimize it. Forget about the very reason why we started in a given way on a given path, and ended up with the resilient, but relatively inefficient situation that we are in. Remembering the reasons why process is structured in a given way, is the ability to matter judge to matter, evaluate. And then to say, this is actually true for a certain part, but not for another part. Look, broader picture, as it were, look to the context of the process and the procedure itself. And then confirm, indeed, this is what we want, or no, we want to change it. So as I am buffeted as all of us by what is going on with COVID. Now with Omicron, and well, maybe in 2022, whatever

   edit   deselect   + to AI

 

else, let's remember, what are the very, very natural consequences of a complex world where we want to be able to deliver solutions to our challenges. And as a consequence, we want to create resilient and adaptable systems and procedures. And as a consequence, we live our lives both individually as well as economically and our society overall. Without worrying about being super efficient. Let's give us a little slack. Let's give us collectively a little leeway, the benefit of doubt and empathy and love when we are together or from afar.

   edit   deselect   + to AI

 
graph view:


        
Show Nodes with Degree > 0:

0 0

Filter Graphs:


Filter Time Range
from: 0
to: 0


Recalculate Metrics Reset Filters
Show Labels for Nodes > 0 size:

0 0

Default Label Size: 0

0 20



Edges Type:



Layout Type:


 

Reset to Default
Language Processing Settings:

language logic: stop words:
 
merged nodes: unmerge
show as nodes: double brackets: categories as mentions:
discourse structure:
×  ⁝⁝ 
×  ⁝⁝ 
Network Structure Insights
 
mind-viral immunity:
N/A
  ?
stucture:
N/A
  ?
The higher is the network's structure diversity and the higher is the alpha in the influence propagation score, the higher is its mind-viral immunity — that is, such network will be more resilient and adaptive than a less diverse one.

In case of a discourse network, high mind-viral immunity means that the text proposes multiple points of view and propagates its influence using both highly influential concepts and smaller, secondary topics.
The higher is the diversity, the more distinct communities (topics) there are in this network, the more likely it will be pluralist.
The network structure indicates the level of its diversity. It is based on the modularity measure (>0.4 for medium, >0.65 for high modularity, measured with Louvain (Blondel et al 2008) community detection algorithm) in combination with the measure of influence distribution (the entropy of the top nodes' distribution among the top clusters), as well as the the percentage of nodes in the top community.

Modularity
0
Influence Distribution
0
%
Topics Nodes in Top Topic Components Nodes in Top Comp
0
0
%
0
0
%
Nodes Av Degree Density Weighed Betweenness
0
0
0
0
 

Narrative Influence Propagation:
  ?
The chart above shows how influence propagates through the network. X-axis: lemma to lemma step (narrative chronology). Y-axis: change of influence.

The more even and rhythmical this propagation is, the stronger is the central idea or agenda (see alpha exponent below ~ 0.5 or less).

The more variability can be seen in the propagation profile, the less is the reliance on the main concepts (agenda), the stronger is the role of secondary topical clusters in the narrative.
propagation dynamics: | alpha exponent: (based on Detrended Fluctuation Analysis of influence) ?   show the chart
We plot the narrative as a time series of influence (using the words' betweenness score). We then apply detrended fluctuation analysis to identify fractality of this time series, plotting the log2 scales (x) to the log2 of accumulated fluctuations (y). If the resulting loglog relation can be approximated on a linear polyfit, there may be a power-law relation in how the influence propagates in this narrative over time (e.g. most of the time non-influential words, occasionally words with a high influence).

Using the alpha exponent of the fit (which is closely related to Hurst exponent)), we can better understand the nature of this relation: uniform (pulsating | alpha <= 0.65), variable (stationary, has long-term correlations | 0.65 < alpha <= 0.85), fractal (adaptive | 0.85 < alpha < 1.15), and complex (non-stationary | alpha >= 1.15).

For maximal diversity, adaptivity, and plurality, the narrative should be close to "fractal" (near-critical state). For fiction, essays, and some forms of poetry — "uniform". Informative texts will often have "variable + stationary" score. The "complex" state is an indicator that the text is always shifting its state.

Degree Distribution:
  calculate & show   ?
(based on kolmogorov-smirnov test) ?   switch to linear
Using this information, you can identify whether the network has scale-free / small-world (long-tail power law distribution) or random (normal, bell-shaped distribution) network properties.

This may be important for understanding the level of resilience and the dynamics of propagation in this network. E.g. scale-free networks with long degree tails are more resilient against random attacks and will propagate information across the whole structure better.
If a power-law is identified, the nodes have preferential attachment (e.g. 20% of nodes tend to get 80% of connections), and the network may be scale-free, which may indicate that it's more resilient and adaptive. Absence of power law may indicate a more equalized distribution of influence.

Kolmogorov-Smirnov test compares the distribution above to the "ideal" power-law ones (^1, ^1.5, ^2) and looks for the best fit. If the value d is below the critical value cr it is a sign that the both distributions are similar.
×  ⁝⁝ 
     
Main Topical Groups:

please, add your data to display the stats...
+     full stats   ?     show categories

The topics are the nodes (words) that tend to co-occur together in the same context (next to each other).

We use a combination of clustering and graph community detection algorithm (Blondel et al based on Louvain) to identify the groups of nodes are more densely connected together than with the rest of the network. They are aligned closer to each other on the graph using the Force Atlas algorithm (Jacomy et al) and are given a distinct color.
Most Influential Elements:
please, add your data to display the stats...
+     Reveal Non-obvious   ?

We use the Jenks elbow cutoff algorithm to select the top prominent nodes that have significantly higher influence than the rest.

Click the Reveal Non-obvious button to remove the most influential words (or the ones you select) from the graph, to see what terms are hiding behind them.

The most influential nodes are either the ones with the highest betweenness centrality — appearing most often on the shortest path between any two randomly chosen nodes (i.e. linking the different distinct communities) — or the ones with the highest degree.
Network Structure:
N/A
?
The network structure indicates the level of its diversity. It is based on the modularity measure (>0.4 for medium, >0.65 for high modularity, measured with Louvain (Blondel et al 2008) community detection algorithm) in combination with the measure of influence distribution (the entropy of the top nodes' distribution among the top clusters), as well as the the percentage of nodes in the top community.


Reset Graph   Export: Show Options
Action Advice:
N/A
Structural Gap
(ask a research question that would link these two topics):
N/A
Reveal the Gap   Generate a Question   ?
 
A structural gap shows the two distinct communities (clusters of words) in this graph that are important, but not yet connected. That's where the new potential and innovative ideas may reside.

This measure is based on a combination of the graph's connectivity and community structure, selecting the groups of nodes that would either make the graph more connected if it's too dispersed or that would help maintain diversity if it's too connected.

Latent Topical Brokers
(less visible terms that link important topics):
N/A
?

These are the latent brokers between the topics: the nodes that have an unusually high rate of influence (betweenness centrality) to their freqency — meaning they may appear not as often as the most influential nodes but they are important narrative shifting points.

These are usually brokers between different clusters / communities of nodes, playing not easily noticed and yet important role in this network, like the "grey cardinals" of sorts.

Emerging Keywords
N/A

Evolution of Topics
(number of occurrences per text segment) ?
The chart shows how the main topics and the most influential keywords evolved over time. X-axis: time period (split into 10% blocks). Y-axis: cumulative number of occurrences.

Drag the slider to see how the narrative evolved over time. Select the checkbox to recalculate the metrics at every step (slower, but more precise).

 
Main Topics
(according to Latent Dirichlet Allocation):
loading...
 ?  

LDA stands for Latent Dirichlet Allocation — it is a topic modelling algorithm based on calculating the maximum probability of the terms' co-occurrence in a particular text or a corpus.

We provide this data for you to be able to estimate the precision of the default InfraNodus topic modeling method based on text network analysis.
Most Influential Words
(main topics and words according to LDA):
loading...

We provide LDA stats for comparison purposes only. It works with English-language texts at the moment. More languages are coming soon, subscribe @noduslabs to be informed.

Sentiment Analysis


positive: | negative: | neutral:
reset filter    ?  

We analyze the sentiment of each statement to see whether it's positive, negative, or neutral. You can filter the statements by sentiment (clicking above) and see what kind of topics correlate with every mood.

The approach is based on AFINN and Emoji Sentiment Ranking

 
Use the Bert AI model for English, Dutch, German, French, Spanish and Italian to get more precise results (slower). Standard model is faster, works for English only, is less precise, and is based on a fixed AFINN dictionary.

Keyword Relations Analysis:

please, select the node(s) on the graph see their connections...
+   ⤓ download CSV   ?

Use this feature to compare contextual word co-occurrences for a group of selected nodes in your discourse. Expand the list by clicking the + button to see all the nodes your selected nodes are connected to. The total influence score is based on betweenness centrality measure. The higher is the number, the more important are the connections in the context of the discourse.
Top Relations / Bigrams
(both directions):

⤓ Download   ⤓ Directed Bigrams CSV   ?

The most prominent relations between the nodes that exist in this graph are shown above. We treat the graph as undirected by default as it allows us to better detect general patterns.

As an option, you can also downloaded directed bigrams above, in case the direction of the relations is important (for any application other than language).

Text Statistics:
Word Count Unique Lemmas Characters Lemmas Density
0
0
0
0
Text Network Statistics:
Show Overlapping Nodes Only

⤓ Download as CSV  ⤓ Download an Excel File
Please, enter a search query to visualize the difference between what people search for (related queries) and what they actually find (search results):

 
We will build two graphs:
1) Google search results for your query;
2) Related searches for your query (Google's SERP);
Click the Missing Content tab to see the graph that shows the difference between what people search for and what they actually find, indicating the content you could create to fulfil this gap.
Find a market niche for a certain product, category, idea or service: what people are looking for but cannot yet find*

 
We will build two graphs:
1) the content that already exists when you make this search query (informational supply);
2) what else people are searching for when they make this query (informational demand);
You can then click the Niche tab to see the difference between the supply and the demand — what people need but do not yet find — the opportunity gap to fulfil.
Please, enter your query to visualize Google search results as a graph, so you can learn more about this topic:

   advanced settings    add data manually
Enter a search query to analyze the Twitter discourse around this topic (last 7 days):

     advanced settings    add data manually

Sign Up